2017. 12. 04. 10:15 - 2017. 12. 04. 11:15
             MTA Rényi Intézet, nagyterem
           -
            
           -
             -
           
  
    Esemény típusa:
              szeminárium
          
             
  
    Szervezés:
              Intézeti
          
           -
             Algebra szeminárium
          Leírás
Refinements of Bruhat cells, in the sense of C. Curtis and V. Deodhar, are combinatorial devices for describing intersections of the form HxH.HyH\cap HzH where H can be a Borel subgroup B of a simple algebraic group G, the unipotent radical of B or their analogues in a finite group of Lie type. One motivation, in the case of finite groups, comes from the possibility of obtaining structure constants for the endomorphism algebra of a Gelfand-Graev representation - this is work in progress with A. Paolini.