2025. 05. 08. 12:30 - 2025. 05. 08. 14:00
             Nagyterem, Rényi Intézet
           -
             -
           
  
    Esemény típusa:
              szeminárium
          
             
  
    Szervezés:
              Intézeti
          
           -
             Extremal Set Systems seminar
          Leírás
In 2010, Butler, Costello, and Graham proposed a conjecture: Let $ax + by = az$ be an equation, where $a, b$ are integers.
Denote by $R,B$ the colors red and blue, respectively. 
$(i)$ If $b>a\geq 2$ and $\gcd(a, b)=1$, then the coloring that gives the minimum number of monochromatic solutions over any $2$-coloring of $[1, n]$ is $[(R^{a-1}, B)^{\frac{n}{b}},R^{(\frac{b-a}{b})n}]$.
$(ii)$ If $a>b\geq 2$ and $\gcd(a, b)=1$, then
the coloring that gives the minimum number of monochromatic solutions over
any $2$-coloring of $[1, n]$ is $[(R^{a-1}, B)^{\frac{n}{a}}]$. In this paper, we confirm this conjecture.