2018. 10. 16. 14:00 - 2018. 10. 16. 15:30
             Rényi Intézet, Nagyterem
           -
             -
           
  
    Esemény típusa:
              szeminárium
          
             
  
    Szervezés:
              Intézeti
          
           -
             Számelmélet szeminárium
          Leírás
A weak version of Clausen von Staudt says that generalized Bernoulli numbers $B_{n,\chi}$ have bounded denominators, when $\chi$ varies over Dirichlet characters. One can ask the same question for critical values of $L$-functions attached to modular forms, but there seem to be no results on this in the literature. We will give an affirmative answer in the case of standard $L$-functions for Siegel modular forms. The main tool is an integral representation of such $L$-functions using Eisenstein series.