2024. 10. 17. 12:15 - 2024. 10. 17. 13:15
             Rényi Intézet, Tondós
           -
            
           -
             -
           
  
    Esemény típusa:
              szeminárium
          
             
  
    Szervezés:
              Intézeti
          
           -
             Analízis szeminárium
          Leírás
Let K be a nonempty finite subset of the Euclidean space R^k (k ≥ 2). In this talk we discuss the solution of the following so-called discrete Pompeiu problem: Is it true that whenever a function f : R^k → C is such that the sum of f on every congruent copy of K is zero, then f vanishes everywhere? Some important consequences of the result will also be presented such as every finite subset of R^k having at least two elements is a Jackson set.
This is a joint work with Miklós Laczkovich.