2024. 09. 26. 12:15 - 2024. 09. 26. 13:45
             Rényi Nagyterem
           -
             -
           
  
    Esemény típusa:
              szeminárium
          
             
  
    Szervezés:
              Intézeti
          
           -
             Extremális halmazrendszerek szeminárium
          Leírás
We say that a hypergraph $\mathcal{H}$ contains a graph $H$ as a trace if there exists some set $S\subset V(\mathcal{H})$ such that $\mathcal{H}|_S=\{h\cap S: h\in E(\mathcal{H})\}$ contains a subhypergraph isomorphic to $H$. We study the largest number of hyperedges in uniform hypergraphs avoiding some graph $F$ as a trace. In particular, we improve a bound given by Luo and Spiro in the case $F=C_4$ and uniformity 3.
Joint work with Mike Picollelli