2017. 09. 15. 14:15 - 2017. 09. 15. 15:45
             MTA Rényi Intézet, kutyás terem (harmadik emelet)
           -
             -
           
  
    Esemény típusa:
              szeminárium
          
             
  
    Szervezés:
              Intézeti
          
           -
             Budapest Big Combinatorics + Geometry Seminar
          Leírás
Given a sequence S = (s_1, …, s_m) ∈ [0,1]^m, a block B of S is a
subsequence B=(s_i, s_{i+1}, …, s_j). The size b of a block B is the
sum of its elements. It is proved by Bárány that for each positive
integer n, there is a partition of S into n blocks B_1, …, B_n with
|b_i − b_j| ≤ 1 for every i, j. In this paper, we consider a
generalization of the problem in higher dimensions.
A part of the talk is joint work with Imre Bárány, Gyula Károlyi and Géza Tóth.