2023. 09. 28. 10:30 - 2023. 09. 28. 12:00
             Renyi Intezet,  Nagyterem
           -
             -
           
  
    Esemény típusa:
              szeminárium
          
             
  
    Szervezés:
              Intézeti
          
           -
             Halmazelmélet Szeminárium
          Leírás
Speaker: Attila Joó
Title: The Lovász-Cherkassky theorem in infinite graphs
Abstract: Lovász and Cherkassky discovered independently that if $ G $ is a finite graph and $ T \subseteq V(G) $ such that there are no odd degrees out of T, then the maximal number of edge-disjoint paths connecting distinct vertices in $ T $ is $ \sum_{t\in T}\lambda(t, T-t) $ where $\lambda $ is the local edge-connectivity function. We generalize their theorem to infinite graphs in a structural way in the spirit of the infinite version of Menger's theorem by Aharoni and Berger (formerly known as the Erdős-Menger Conjecture)