2017. 03. 20. 16:15 - 2017. 03. 20. 17:45
             -
           -
             -
           -
             -
           
  
    Esemény típusa:
              szeminárium
          
             
  
    Szervezés:
              Intézeti
          
           -
             Kutszem
          Leírás
Előadó: Abért Miklós
Cím: Sofic entropy and factor maps
Absztrakt: I will talk about new results with Benjy Weiss that say that for a process mu over a sofic group (or vertex transitive graph), and a factor map F, we have h(mu) <= h(Im F) + h(Ker F). (Or course one has to define the entropy notion h so that this makes sense). Equality never holds for nonamenable groups or graphs because of Ornstein-Weiss type counterexamples. This implies the following strengthening of Gromov's original theorem that made him introduce sofic groups: Let A be a finite automata over a sofic group such that the preimage of every point is countable. Then A is surjective.